Carbon nanotubes as ultrahigh quality factor mechanical resonators.
نویسندگان
چکیده
We have observed the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures by measuring the single-electron tunneling current. The suspended nanotubes are actuated contact-free by the radio frequency electric field of a nearby antenna; the mechanical resonance is detected in the time-averaged current through the nanotube. Sharp, gate-tunable resonances due to the bending mode of the nanotube are observed, combining resonance frequencies of up to nu(0) = 350 MHz with quality factors above Q = 10(5), much higher than previously reported results on suspended carbon nanotube resonators. The measured magnitude and temperature dependence of the Q factor shows a remarkable agreement with the intrinsic damping predicted for a suspended carbon nanotube. By adjusting the radio frequency power on the antenna, we find that the nanotube resonator can easily be driven into the nonlinear regime.
منابع مشابه
Coupling carbon nanotube mechanics to a superconducting circuit
The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as cohe...
متن کاملNonlinear damping in mechanical resonators made from carbon nanotubes and graphene.
The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with o...
متن کاملOscillation control of carbon nanotube mechanical resonator by electrostatic interaction induced retardation
Despite the superb intrinsic properties of carbon nanotube mechanical resonators, the quality factors at room temperature are 1,000 or less, even in vacuum, which is much lower than that of mechanical resonators fabricated using a top-down approach. This study demonstrates the improvement of the quality factor and the control of nonlinearity of the mechanical resonance of the cantilevered nanot...
متن کاملDissipation in ultrahigh quality factor SiN membrane resonators.
We study the mechanical properties of stoichiometric SiN resonators through a combination of spectroscopic and interferometric imaging techniques. At room temperature, we demonstrate ultrahigh quality factors of 5×107 and a f×Q product of 1×1014 Hz. To our knowledge, these correspond to the largest values yet reported for mesoscopic flexural resonators. Through a comprehensive study of the lim...
متن کاملDetermination of Frequency Dependent Fluid Damping of Micro and Nano Resonators for Different Cross-Sections
This research quantitatively investigates fluid damping of MEMS and NEMS flexural resonators such as scanning probe and carbon nano-tube resonators, aiming to improve the quality factor prediction and therefore the resonator design. Fluid damping in beam-type resonators is most affected by resonant frequency, device dimensions and cross-sectional shape which are systematically examined within. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 9 7 شماره
صفحات -
تاریخ انتشار 2009